Modules Over Monads and Their Algebras
نویسندگان
چکیده
Modules over monads (or: actions of monads on endofunctors) are structures in which a monad interacts with an endofunctor, composed either on the left or on the right. Although usually not explicitly identified as such, modules appear in many contexts in programming and semantics. In this paper, we investigate the elementary theory of modules. In particular, we identify the monad freely generated by a right module as a generalisation of Moggi’s resumption monad and characterise its algebras, extending previous results by Hyland, Plotkin and Power, and by Filinski and Støvring. Moreover, we discuss a connection between modules and algebraic effects: left modules have a similar feeling to Eilenberg–Moore algebras, and can be seen as handlers that are natural in the variables, while right modules can be seen as functions that run effectful computations in an appropriate context (such as an initial state for a stateful computation). 1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, F.3.3 Studies of Program Constructs
منابع مشابه
G-frames in Hilbert Modules Over Pro-C*-algebras
G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...
متن کاملAzumaya Monads and Comonads
The definition of Azumaya algebras over commutative rings R requires the tensor product of modules over R and the twist map for the tensor product of any two R-modules. Similar constructions are available in braided monoidal categories, and Azumaya algebras were defined in these settings. Here, we introduce Azumaya monads on any category A by considering a monad (F,m, e) on A endowed with a dis...
متن کاملSome Properties of $ ast $-frames in Hilbert Modules Over Pro-C*-algebras
In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...
متن کاملOn the Finsler modules over H-algebras
In this paper, applying the concept of generalized A-valued norm on a right $H^*$-module and also the notion of ϕ-homomorphism of Finsler modules over $C^*$-algebras we first improve the definition of the Finsler module over $H^*$-algebra and then define ϕ-morphism of Finsler modules over $H^*$-algebras. Finally we present some results concerning these new ones.
متن کامل*-frames in Hilbert modules over pro-C*-algebras
In this paper, by using the sequence of multipliers, we introduce frames with algebraic bounds in Hilbert pro-$ C^* $-modules. We investigate the relations between frames and $ ast $-frames. Some properties of $ ast $-frames in Hilbert pro-$ C^* $-modules are studied. Also, we show that there exist two differences between $ ast $-frames in Hilbert pro-$ C^* $-modules and Hilbert $ ...
متن کامل